On wideband matching circuits in handset antenna design

نویسندگان

  • Anu Lehtovuori
  • Risto Valkonen
چکیده

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Anu Lehtovuori Name of the doctoral dissertation On wideband matching circuits in handset antenna design Publisher School of Electrical Engineering Unit Department of Radio Science and Engineering Series Aalto University publication series DOCTORAL DISSERTATIONS 123/2015 Field of research Circuit Theory Manuscript submitted 21 May 2015 Date of the defence 2 October 2015 Permission to publish granted (date) 22 July 2015 Language English Monograph Article dissertation (summary + original articles) Abstract Transferring the growing amount of data calls for wider bandwidths in new wireless standards. For the mobile antennas, which have to be squeezed to a very limited space, this poses quite a challenge for impedance matching, if efficiency is not to be sacrificed. Earlier, wideband matching was studied as a rather theoretical problem, but this work takes a practical viewpoint to produce readily applicable results. The goal is to utilize circuit elements to improve the performance of handset antennas. Because the number of matching elements is to minimized in practical designs, this work focuses particularly on three-element matching circuits. The presented efficient procedure for determining the available bandwidth with a certain matching topology, i.e., the bandwidth estimator, enable accounting for the matching circuit from the beginning of the antenna design process. Furthermore, evaluating the potential of different radiating structures becomes feasible. In mobile systems, the desired frequency band consists of two passbands, and therefore finding methods for dual-band matching is reasonable. This work presents how any two matching circuits designed separately for frequencies f1 and f2 can be converted into a dualband matching circuit operating both at f1 and f2. In addition, simple design equations for dualband matching are given. A dual-band matching can be realized also with two radiating elements. This widens the study to illustrate how bandwidth estimators can be used to design matching circuits for multiple ports. Moreover, it is shown that bandwidth estimator analysis offers a suitable starting point for practical design — the simulations and measurements are in good agreement. Finally, the work introduces other ways to improve antenna performance with aid of circuit elements and bandwidth estimators.Transferring the growing amount of data calls for wider bandwidths in new wireless standards. For the mobile antennas, which have to be squeezed to a very limited space, this poses quite a challenge for impedance matching, if efficiency is not to be sacrificed. Earlier, wideband matching was studied as a rather theoretical problem, but this work takes a practical viewpoint to produce readily applicable results. The goal is to utilize circuit elements to improve the performance of handset antennas. Because the number of matching elements is to minimized in practical designs, this work focuses particularly on three-element matching circuits. The presented efficient procedure for determining the available bandwidth with a certain matching topology, i.e., the bandwidth estimator, enable accounting for the matching circuit from the beginning of the antenna design process. Furthermore, evaluating the potential of different radiating structures becomes feasible. In mobile systems, the desired frequency band consists of two passbands, and therefore finding methods for dual-band matching is reasonable. This work presents how any two matching circuits designed separately for frequencies f1 and f2 can be converted into a dualband matching circuit operating both at f1 and f2. In addition, simple design equations for dualband matching are given. A dual-band matching can be realized also with two radiating elements. This widens the study to illustrate how bandwidth estimators can be used to design matching circuits for multiple ports. Moreover, it is shown that bandwidth estimator analysis offers a suitable starting point for practical design — the simulations and measurements are in good agreement. Finally, the work introduces other ways to improve antenna performance with aid of circuit elements and bandwidth estimators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CPW-Fed Circularly Polarized Slot ANTENNA with Elliptical-Shaped Patch for UWB Applications

A new design of coplanar waveguide (CPW)-fed antenna with circular polarization (CP) and excellent impedance matching is presented. In this design a pair of circular-shaped slits is applied to opposite corners of the slot for enhancing the impedance matching and realizes bandwidth of 134.43% across 2.98-15.20 GHz for VSWR≤2. Furthermore this structure exhibits axial ration bandwidth (ARBW) of 3...

متن کامل

Antenna Design and Non Linear Simulation of Rectifier for Wideband and Multi-Tone Radio Frequency Energy Harvesting

In this paper, a wideband rectenna without using matching networks is presented. In addition of wide bandwidth, the omnidirectional radiation pattern, maximum radio frequency to dc conversion efficiency, harvesting capability of the minimum input power level, easy fabrication process cause this antenna be a good choice for radio frequency energy harvesting applications. Matching network has bee...

متن کامل

Design and Implementation of a Compact Super-Wideband Printed Antipodal Antenna Using Fractal Elements

A compact printed fractal antipodal bow-tie antenna is designed and implemented to simultaneously cover the operations in the C, X, and Ku-bands. It is demonstrated that by addition of small fractal elements at the sides of hexagonal arms of the bow-tie, a wide operating frequency range of 3.3 to 19.1 GHz can be covered while antenna size is only 30×34×1.2 mm3. In order to match the antenna to ...

متن کامل

Design of a Wideband Microstrip Antenna for Mobile Handset Applications

This article summarizes the design, construction and experimental results for a new wideband miniaturized antenna operating in the 1.9 GHz band. This antenna is intended for handset applications, and may also be used as an element in a larger array. Using shorting pins at the zero-potential plane, a compact antenna with a 21 percent bandwidth was designed and tested, with quite good agreement b...

متن کامل

A compact planar ultra-wideband handset antenna with L-shaped extended ground stubs

In this letter, a compact planar ultra-wideband mobile antenna with L-shaped extended ground stubs is presented. The proposed handset antenna consists of two planar meandered monopole radiating elements, i.e., main antenna and auxiliary antenna respectively, located at the diagonal corners of mobile phone printed circuit broad with standard size of 136 × 68mm2. Each radiating element is compose...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015